Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACC Case Rep ; 29(10): 102321, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601841

RESUMO

Cardiac involvement of eosinophilic granulomatosis with polyangiitis is a rare but life-threatening complication. We present a case of eosinophilic granulomatosis with polyangiitis with moderately impaired ventricular function forming a ventricular thrombus. Pathological assessment of endomyocardial biopsy specimen revealed aggregated eosinophils in the subendocardium, suggesting ventricular endothelial damage leading to thrombus formation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38010832

RESUMO

The procedural success in the implantation of cardiac electric devices depends on both the implanted position and the electric performance. The capture threshold and the pacing output affect the estimated battery longevity. In a case with a high capture threshold, recapture and reimplantation of a leadless pacemaker are commonly recommended. We experienced a case with the rate-dependent elevation of the capture threshold following the implantation of a leadless pacemaker. The recognition of the rate-dependency of the capture threshold and the acceptable programming could avoid the unnecessary recapture and reimplantation of that, avoiding the increase of procedural risks.

3.
J Steroid Biochem Mol Biol ; 232: 106351, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37352941

RESUMO

The vitamin D receptor (VDR) is expressed most abundantly in osteoblasts and osteocytes (osteoblastic cells) in bone tissues and regulates bone resorption and calcium (Ca) and phosphate (P) homeostasis in association with parathyroid hormone (PTH). We previously reported that near-physiological doses of vitamin D compounds suppressed bone resorption through VDR in osteoblastic cells. We also found that supra-physiological doses of 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] induced bone resorption and hypercalcemia via VDR in osteoblastic cells. Here, we report that the latter, a proresorptive dose of 1,25(OH)2D3, causes soft tissue calcification through VDR in osteoblastic cells. High concentrations of vitamin D affect multiple organs and cause soft tissue calcification, with increases in bone resorption and serum Ca levels. Such a variety of symptoms is known as hypervitaminosis D, which is caused by not only high doses of vitamin D but also impaired vitamin D metabolism and diseases that produce 1,25(OH)2D3 ectopically. To clarify the biological process hierarchy in hypervitaminosis D, a proresorptive dose of 1,25(OH)2D3 was administered to wild-type mice in which bone resorption had been suppressed by neutralizing anti-receptor activator of NF-κB ligand (RANKL) antibody. 1,25(OH)2D3 upregulated the serum Ca x P product, concomitantly induced calcification of the aorta, lungs, and kidneys, and downregulated serum PTH levels in control IgG-pretreated wild-type mice. Pretreatment of wild-type mice with anti-RANKL antibody did not affect the down-regulation of PTH levels by 1,25(OH)2D3, but inhibited the increase of the serum Ca x P product and soft tissue calcification induced by 1,25(OH)2D3. Consistent with the effects of anti-RANKL antibody, VDR ablation in osteoblastic cells also did not affect the down-regulation of PTH levels by 1,25(OH)2D3, but suppressed the 1,25(OH)2D3-induced increase of the serum Ca x P product and calcification of soft tissues. Taken together with our previous results, these findings suggest that bone resorption induced by VDR signaling in osteoblastic cells is critical for the pathogenesis of hypervitaminosis D, but PTH is not involved in hypervitaminosis D.


Assuntos
Fenômenos Biológicos , Receptores de Calcitriol , Camundongos , Animais , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Hormônio Paratireóideo/metabolismo , Calcitriol/metabolismo , Vitamina D/farmacologia , Vitamina D/metabolismo , Vitaminas/farmacologia
4.
Sci Rep ; 13(1): 5428, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012295

RESUMO

Vascular endothelial cells (ECs) respond to mechanical stimuli caused by blood flow to maintain vascular homeostasis. Although the oxygen level in vascular microenvironment is lower than the atmospheric one, the cellular dynamics of ECs under hypoxic and flow exposure are not fully understood. Here, we describe a microfluidic platform for the reproduction hypoxic vascular microenvironments. Simultaneous application of hypoxic stress and fluid shear stress to the cultured cells was achieved by integrating a microfluidic device and a flow channel that adjusted the initial oxygen concentration in a cell culture medium. An EC monolayer was then formed on the media channel in the device, and the ECs were observed after exposure to hypoxic and flow conditions. The migration velocity of the ECs immediately increased after flow exposure, especially in the direction opposite to the flow direction, and gradually decreased, resulting in the lowest value under the hypoxic and flow exposure condition. The ECs after 6-h simultaneous exposure to hypoxic stress and fluid shear stress were generally aligned and elongated in the flow direction, with enhanced VE-cadherin expression and actin filament assembly. Thus, the developed microfluidic platform is useful for investigating the dynamics of ECs in vascular microenvironments.


Assuntos
Células Endoteliais , Microfluídica , Células Endoteliais/metabolismo , Células Cultivadas , Técnicas de Cultura de Células , Oxigênio/metabolismo , Estresse Mecânico , Endotélio Vascular/metabolismo
5.
ACS Med Chem Lett ; 13(10): 1582-1590, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36262392

RESUMO

Monoamine oxidase B (MAO-B) metabolizes monoamines such as dopamine regarding neural transmission and controls its level in the mammalian's brain. When MAO-B metabolizes dopamine abnormally, normal neurotransmission does not occur, and central nervous system disorders such as Parkinson's disease may develop. Although several MAO inhibitors have been developed, most of them have no selectivity between monoamine oxidase A (MAO-A) and MAO-B, or they work irreversibly against the enzyme. This report describes the first case of screening of N-arylated heliamine derivatives to develop novel MAO-B selective inhibitors that can be synthesized concisely by microwave-assisted Pd nanoparticle-catalyzed Buchwald-Hartwig amination. We discovered that the derivatives 4h, 4i, and 4j display inhibitory activity against MAO-B with IC50 values of 1.55, 13.5, and 5.08 µM, respectively.

6.
Int Immunol ; 34(8): 435-444, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35689642

RESUMO

LILRB4 (B4, also known as ILT3/CD85k) is an immune checkpoint of myeloid lineage cells, albeit its mode of function remains obscure. Our recent identification of a common ligand for both human B4 and its murine ortholog gp49B as the fibronectin (FN) N-terminal 30 kDa domain poses the question of how B4/gp49B regulate cellular activity upon recognition of FN in the plasma and/or the extracellular matrix. Since FN in the extracellular matrix is tethered by FN-binding integrins, we hypothesized that B4/gp49B would tether FN in cooperation with integrins on the cell surface, thus they should be in close vicinity to integrins spatially. This scenario suggests a mode of function of B4/gp49B by which the FN-induced signal is regulated. The FN pull-down complex was found to contain gp49B and integrin ß 1 in bone marrow-derived macrophages. The confocal fluorescent signals of the three molecules on the intrinsically FN-tethering macrophages were correlated to each other. When FN-poor macrophages adhered to culture plates, the gp49-integrin ß 1 signal correlation increased at the focal adhesion, supporting the notion that gp49B and integrin ß 1 become spatially closer to each other there. Adherence of RAW264.7 and THP-1 cells to immobilized FN induced phosphorylation of spleen tyrosine kinase, whose level was augmented under B4/gp49B deficiency. Thus, we concluded that B4/gp49B can co-tether FN in cooperation with integrin in the cis configuration on the same cell, forming a B4/gp49B-FN-integrin triplet as a regulatory unit of a focal adhesion-dependent pro-inflammatory signal in macrophages.


Assuntos
Fibronectinas , Integrinas , Animais , Adesão Celular , Fibronectinas/química , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Humanos , Integrinas/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Fosforilação , Receptores Imunológicos/metabolismo
7.
Tohoku J Exp Med ; 257(3): 171-180, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35691913

RESUMO

A myeloid immune checkpoint, leukocyte immunoglobulin-like receptor (LILR) B4 (B4, also known as ILT3/CD85k in humans and gp49B in mice) is expressed on dendritic cells (DCs). However, a mode of regulation of DCs by B4/gp49B is not identified yet in relation to the ligand(s) as well as to the counteracting, activation-type receptor. Our recent identification of the physiological/pathological ligand for B4/gp49B as the fibronectin (FN) N-terminal 30-kDa domain poses the question of the relationship between B4/gp49B and a classical FN receptor/cellular activator, integrin, on DCs. Here we showed that FN is not constitutively tethered on the surface of bone marrow-derived cultured DCs (BMDCs) or splenic DCs, even though the FN receptor integrin and gp49B are co-expressed on these cells. Confocal laser scanning microscopic analysis, however, revealed weak correlation of fluorescent signals between gp49B and integrin ß1, suggesting their partial co-localization on the BMDC surface even in the absence of FN. We found that the plating of BMDCs onto immobilized FN induced tyrosine phosphorylation of focal adhesion kinase (FAK) and spleen tyrosine kinase (Syk). In the absence of gp49B, while the FAK phosphorylation level was virtually unchanged, that of phosphorylation of Syk was markedly augmented. These results suggested that the immobilized FN induced a crosstalk between gp49B and integrin in terms of the intracellular signaling of BMDCs, in which gp49B suppressed the integrin-mediated pro-inflammatory cascade. Our observations may provide a clue for elucidating the mechanism of the therapeutic efficacy of B4/gp49B blocking in autoimmune disease and cancer.


Assuntos
Integrinas , Receptores de Fibronectina , Animais , Adesão Celular , Células Dendríticas/metabolismo , Fibronectinas/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Integrinas/metabolismo , Ligantes , Glicoproteínas de Membrana/metabolismo , Camundongos , Fosforilação , Receptores de Fibronectina/metabolismo , Receptores Imunológicos/metabolismo
8.
Cell Adh Migr ; 15(1): 272-284, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34550057

RESUMO

The collective migration of vascular endothelial cells plays important roles in homeostasis and angiogenesis. Oxygen concentration in vivo, which is lower than in the atmosphere and changes due to diseases, is a key factor affecting the cellular dynamics of vascular endothelial cells. We previously reported that hypoxic conditions promote the internalization of vascular endothelial (VE)-cadherin, a specific cell-cell adhesion molecule, and increase the velocity of the collective migration of vascular endothelial cells. However, the mechanism through which cells regulate collective migration as affected by oxygen tension is not fully understood. Here, we investigated oxygen-dependent collective migration, focusing on intracellular protein p21-activated kinase (PAK) and hypoxia-inducing factor (HIF)-1α. A monolayer of human umbilical vein vascular endothelial cells (HUVECs) was formed in a microfluidic device with controllability of oxygen tension. The HUVECs were then exposed to various oxygen conditions in a range from 0.8% to 21% O2, with or without PAK inhibition or chemical stabilization of HIF-1α. Collective cell migration was measured by particle image velocimetry with time-lapse phase-contrast microscopic images. Localizations of VE-cadherin and HIF-1α were quantified by immunofluorescent staining. The collective migration of HUVECs varied in an oxygen-dependent fashion; the migration speed was increased by hypoxic exposure down to 1% O2, while it decreased under an extremely low oxygen tension of less than 1% O2. PAK inhibition suppressed the hypoxia-induced increase of the migration speed by preventing VE-cadherin internalization into HUVECs. A decrease in the migration speed was also obtained by chemical stabilization of HIF-1α, suggesting that excessive accumulation of HIF-1α diminishes collective cell migration. These results indicate that the oxygen-dependent variation of the migration speed of vascular endothelial cells is mediated by the regulation of VE-cadherin through the PAK pathway, as well as other mechanisms via HIF-1α, especially under extreme hypoxic conditions.


Assuntos
Neovascularização Patológica , Quinases Ativadas por p21 , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipóxia , Oxigênio
9.
Endocrinology ; 161(11)2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32987399

RESUMO

We previously reported that daily administration of a pharmacological dose of eldecalcitol, an analog of 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], increased bone mass by suppressing bone resorption. These antiresorptive effects were found to be mediated by the vitamin D receptor (VDR) in osteoblast-lineage cells. Using osteoblast-lineage-specific VDR conditional knockout (Ob-VDR-cKO) mice, we examined whether proresorptive activity induced by the high-dose 1α,25(OH)2D3 was also mediated by VDR in osteoblast-lineage cells. Administration of 1α,25(OH)2D3 (5 µg/kg body weight/day) to wild-type mice for 4 days increased the number of osteoclasts in bone and serum concentrations of C-terminal crosslinked telopeptide of type I collagen (CTX-I, a bone resorption marker). The stimulation of bone resorption was concomitant with the increase in serum calcium (Ca) and fibroblast growth factor 23 (FGF23) levels, and decrease in body weight. This suggests that a toxic dose of 1α,25(OH)2D3 can induce bone resorption and hypercalcemia. In contrast, pretreatment of wild-type mice with neutralizing anti-receptor activator of NF-κB ligand (RANKL) antibody inhibited the 1α,25(OH)2D3-induced increase of osteoclast numbers in bone, and increase of CTX-I, Ca, and FGF23 levels in serum. The pretreatment with anti-RANKL antibody also inhibited the 1α,25(OH)2D3-induced decrease in body weight. Consistent with observations in mice conditioned with anti-RANKL antibody, the high-dose administration of 1α,25(OH)2D3 to Ob-VDR-cKO mice failed to significantly increase bone osteoclast numbers, serum CTX-I, Ca, or FGF23 levels, and failed to reduce the body weight. Taken together, this study demonstrated that the proresorptive, hypercalcemic, and toxic actions of high-dose 1α,25(OH)2D3 are mediated by VDR in osteoblast-lineage cells.


Assuntos
Reabsorção Óssea/genética , Linhagem da Célula/genética , Osteoblastos/metabolismo , Receptores de Calcitriol/fisiologia , Vitamina D/análogos & derivados , Animais , Reabsorção Óssea/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Feminino , Fator de Crescimento de Fibroblastos 23 , Hipercalcemia/genética , Hipercalcemia/metabolismo , Hipercalcemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Osteoblastos/citologia , Receptores de Calcitriol/genética , Vitamina D/farmacologia
10.
Sci Rep ; 10(1): 13751, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792620

RESUMO

Bone tissues have trabecular bone with a high bone turnover and cortical bone with a low turnover. The mechanisms by which the turnover rate of these bone tissues is determined remain unclear. Osteocytes secrete sclerostin, a Wnt/ß-catenin signaling antagonist, and inhibit bone formation. We found that sclerostin expression in cortical bone is more marked than in trabecular bone in Sost reporter mice. Leukemia inhibitory factor (LIF) secreted from osteoclasts reportedly suppressed sclerostin expression and promoted bone formation. Here, we report that osteoclasts downregulate sclerostin expression in trabecular bone and promote bone turnover. Treatment of C57BL/6 mice with an anti-RANKL antibody eliminated the number of osteoclasts and LIF-positive cells in trabecular bone. The number of sclerostin-positive cells was increased in trabecular bone, while the number of ß-catenin-positive cells and bone formation were decreased in trabecular bone. Besides, Tnfsf11 heterozygous (Rankl+/-) mice exhibited a decreased number of LIF-positive cells and increased number of sclerostin-positive cells in trabecular bone. Rankl+/- mice exhibited a decreased number of ß-catenin-positive cells and reduced bone formation in trabecular bone. Furthermore, in cultured osteoclasts, RANKL stimulation increased Lif mRNA expression, suggesting that RANKL signal increased LIF expression. In conclusion, osteoclasts downregulate sclerostin expression and promote trabecular bone turnover.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Remodelação Óssea/fisiologia , Osso Esponjoso/metabolismo , Osteoclastos/metabolismo , Ligante RANK/genética , Animais , Anticorpos/imunologia , Biomarcadores Tumorais/metabolismo , Densidade Óssea , Osso Cortical/metabolismo , Fator Inibidor de Leucemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligante RANK/imunologia , Regulação para Cima/genética , Via de Sinalização Wnt/fisiologia
11.
J Bone Miner Res ; 34(10): 1952-1963, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31173642

RESUMO

Intermittent parathyroid hormone (iPTH) treatment induces bone anabolic effects that result in the recovery of osteoporotic bone loss. Human PTH is usually given to osteoporotic patients because it induces osteoblastogenesis. However, the mechanism by which PTH stimulates the expansion of stromal cell populations and their maturation toward the osteoblastic cell lineage has not be elucidated. Mouse genetic lineage tracing revealed that iPTH treatment induced osteoblastic differentiation of bone marrow (BM) mesenchymal stem and progenitor cells (MSPCs), which carried the leptin receptor (LepR)-Cre. Although these findings suggested that part of the PTH-induced bone anabolic action is exerted because of osteoblastic commitment of MSPCs, little is known about the in vivo mechanistic details of these processes. Here, we showed that LepR+ MSPCs differentiated into type I collagen (Col1)+ mature osteoblasts in response to iPTH treatment. Along with osteoblastogenesis, the number of Col1+ mature osteoblasts increased around the bone surface, although most of them were characterized as quiescent cells. However, the number of LepR-Cre-marked lineage cells in a proliferative state also increased in the vicinity of bone tissue after iPTH treatment. The expression levels of SP7/osterix (Osx) and Col1, which are markers for osteoblasts, were also increased in the LepR+ MSPCs population in response to iPTH treatment. In contrast, the expression levels of Cebpb, Pparg, and Zfp467, which are adipocyte markers, decreased in this population. Consistent with these results, iPTH treatment inhibited 5-fluorouracil- or ovariectomy (OVX)-induced LepR+ MSPC-derived adipogenesis in BM and increased LepR+ MSPC-derived osteoblasts, even under the adipocyte-induced conditions. Treatment of OVX rats with iPTH significantly affected the osteoporotic bone tissue and expansion of the BM adipose tissue. These results indicated that iPTH treatment induced transient proliferation of the LepR+ MSPCs and skewed their lineage differentiation from adipocytes toward osteoblasts, resulting in an expanded, quiescent, and mature osteoblast population. © 2019 American Society for Bone and Mineral Research.


Assuntos
Adipogenia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Hormônio Paratireóideo/farmacologia , Receptores para Leptina/metabolismo , Animais , Feminino , Camundongos , Camundongos Transgênicos , Hormônio Paratireóideo/genética , Receptores para Leptina/genética
12.
Commun Biol ; 2: 86, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30854478

RESUMO

Osteoclasts are multinucleated cells responsible for bone resorption. The differentiation of osteoclasts from bone marrow macrophages (BMMs) is induced by receptor activator of NF-κB ligand (RANKL). Osteoprotegerin (OPG), a decoy receptor of RANKL, inhibits osteoclastogenesis by blocking RANKL signaling. Here we investigated the degradation of OPG in vitro. Osteoclasts, but not BMMs, secreted OPG-degrading enzymes. Using mass spectrometry and RNA-sequencing analysis, we identified high-temperature requirement A serine peptidase 1 (HtrA1) as an OPG-degrading enzyme. HtrA1 did not degrade OPG pre-reduced by dithiothreitol, suggesting that HtrA1 recognizes the three-dimensional structure of OPG. HtrA1 initially cleaved the amide bond between leucine 90 and glutamine 91 of OPG, then degraded OPG into small fragments. Inhibitory activity of OPG on RANKL-induced osteoclastogenesis was suppressed by adding HtrA1 in RAW 264.7 cell cultures. These results suggest that osteoclasts potentially prepare a microenvironment suitable for osteoclastogenesis. HtrA1 may be a novel drug target for osteoporosis.


Assuntos
Osso e Ossos/metabolismo , Microambiente Celular , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Osteoclastos/metabolismo , Osteoprotegerina/metabolismo , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular , Células Cultivadas , Microambiente Celular/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Osteoblastos/metabolismo , Osteogênese/genética , Osteoprotegerina/genética , Proteólise , Análise de Sequência de RNA
14.
J Steroid Biochem Mol Biol ; 177: 70-76, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29146302

RESUMO

Active forms of vitamin D enhance osteoclastogenesis in vitro and in vivo through the vitamin D receptor (VDR) in osteoblast-lineage cells consisting of osteoblasts and osteocytes. This pro-resorptive activity was evident basically with higher concentrations of active vitamin D than those expected in physiological conditions. Nevertheless, vitamin D compounds have been used in Japan for treating osteoporosis to increase bone mineral density (BMD). Of note, the increase in BMD by long-term treatment with pharmacological (=near-physiological) doses of vitamin D compounds was caused by the suppression of bone resorption. Therefore, whether vitamin D expresses pro-resorptive or anti-resorptive properties seems to be dependent on the treatment protocols. We established osteoblast lineage-specific and osteoclast-specific VDR conditional knockout (cKO) mice using Osterix-Cre transgenic mice and Cathepsin K-Cre knock-in mice, respectively. According to our observation using these cKO mouse lines, neither VDR in osteoblast-lineage cells nor that in osteoclasts played important roles for osteoclastogenesis and bone resorption at homeostasis. However, using our cKO lines, we observed that VDR in osteoblast-lineage cells, but not osteoclasts, was involved in the anti-resorptive properties of pharmacological doses of vitamin D compounds in vivo. Two different osteoblast-lineage VDR cKO mouse lines were reported. One is a VDR cKO mouse line using alpha 1, type I collagen (Col1a1)-Cre transgenic mice (here we call Col1a1-VDR-cKO mice) and the other is that using dentin matrix protein 1 (Dmp1)-Cre transgenic mice (Dmp1-VDR-cKO mice). Col1a1-VDR-cKO mice exhibited slightly increased bone mass due to lowered bone resorption. In contrast, Dmp1-VDR-cKO mice exhibited no difference in BMD in agreement with our results regarding Ob-VDR-cKO mice. Here we discuss contradictory results and multiple modes of actions of vitamin D in bone resorption in detail. (279 words).


Assuntos
Reabsorção Óssea/metabolismo , Osteogênese/efeitos dos fármacos , Vitamina D/farmacologia , Vitaminas/farmacologia , Animais , Reabsorção Óssea/tratamento farmacológico , Fator de Crescimento de Fibroblastos 23 , Humanos , Osteoprotegerina/fisiologia , Ligante RANK/fisiologia , Receptor Ativador de Fator Nuclear kappa-B/fisiologia , Receptores de Calcitriol/fisiologia , Vitamina D/análogos & derivados , Vitamina D/uso terapêutico , Vitaminas/uso terapêutico
15.
PLoS One ; 12(9): e0184904, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28937990

RESUMO

Osteoblasts express two key molecules for osteoclast differentiation, receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG), a soluble decoy receptor for RANKL. RANKL induces osteoclastogenesis, while OPG inhibits it by blocking the binding of RANKL to RANK, a cellular receptor of RANKL. OPG-deficient (OPG-/-) mice exhibit severe alveolar bone loss with enhanced bone resorption. WP9QY (W9) peptide binds to RANKL and blocks RANKL-induced osteoclastogenesis. W9 is also reported to stimulate bone formation in vivo. Here, we show that treatment with W9 restores alveolar bone loss in OPG-/-mice by suppressing osteoclastogenesis and enhancing osteoblastogenesis. Administration of W9 or risedronate, a bisphosphonate, to OPG-/-mice significantly decreased the osteoclast number in the alveolar bone. Interestingly, treatment with W9, but not risedronate, enhanced Wnt/ß-catenin signaling and induced alveolar bone formation in OPG-/-mice. Expression of sclerostin, an inhibitor of Wnt/ß-catenin signaling, was significantly lower in tibiae of OPG-/-mice than in wild-type mice. Treatment with risedronate recovered sclerostin expression in OPG-/-mice, while W9 treatment further suppressed sclerostin expression. Histomorphometric analysis confirmed that bone formation-related parameters in OPG-/-mice, such as osteoblast number, osteoblast surface and osteoid surface, were increased by W9 administration but not by risedronate administration. These results suggest that treatment of OPG-/-mice with W9 suppressed osteoclastogenesis by inhibiting RANKL signaling and enhanced osteoblastogenesis by attenuating sclerostin expression in the alveolar bone. Taken together, W9 may be a useful drug to prevent alveolar bone loss in periodontitis.


Assuntos
Perda do Osso Alveolar/tratamento farmacológico , Conservadores da Densidade Óssea/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Perda do Osso Alveolar/metabolismo , Perda do Osso Alveolar/patologia , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese/fisiologia , Osteoprotegerina/deficiência , Osteoprotegerina/genética , Ligante RANK/metabolismo , Ácido Risedrônico/farmacologia , Tíbia/efeitos dos fármacos , Tíbia/metabolismo , Tíbia/patologia
16.
Sci Signal ; 10(494)2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851822

RESUMO

Cytoskeletal reorganization in osteoclasts to form actin rings is necessary for these cells to attach to bone and resorb bone matrices. We delineated the pathway through which Wnt5a signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2) promoted the bone-resorbing activity of osteoclasts. Wnt5a binding to Ror2 stimulated Rho, a small GTPase involved in cytoskeletal reorganization. Subsequently, the Rho effector kinase Pkn3 bound to and enhanced the activity of c-Src, a nonreceptor tyrosine kinase that is critical for actin ring formation. Mice with an osteoclast-specific deficiency in Ror2 (Ror2ΔOcl/ΔOcl) had increased bone mass. Osteoclasts derived from these mice exhibited impaired bone resorption and actin ring formation, defects that were rescued by overexpression of constitutively active RhoA. These osteoclasts also exhibited reduced interaction between c-Src and Pkn3 and reduced c-Src kinase activity. Similar to Ror2ΔOcl/ΔOcl mice, mice with a global deficiency of Pkn3 (Pkn3-/-) had increased bone mass. The proline-rich region and kinase domain of Pkn3 were required to restore the bone-resorbing activity of osteoclasts derived from Pkn3-/- mice. Thus, Pkn3 promotes bone resorption downstream of Wnt5a-Ror2-Rho signaling, and this pathway may be a therapeutic target for bone diseases such as osteoporosis, rheumatoid arthritis, and periodontal disease.


Assuntos
Reabsorção Óssea/metabolismo , Proteínas dos Microfilamentos/metabolismo , Osteoclastos/metabolismo , Proteína Quinase C/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Proteína Wnt-5a/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Reabsorção Óssea/patologia , Proteína Tirosina Quinase CSK , Modelos Animais de Doenças , Quinase 2 de Adesão Focal/genética , Quinase 2 de Adesão Focal/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Osteoporose/metabolismo , Osteoporose/patologia , Doenças Periodontais/metabolismo , Doenças Periodontais/patologia , Fosforilação , Proteína Quinase C/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Proteína Wnt-5a/genética , Proteínas rho de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP , Quinases da Família src/genética , Quinases da Família src/metabolismo
17.
Sci Rep ; 7(1): 4928, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28694469

RESUMO

Bone marrow mesenchymal stem and progenitor cells (BM-MSPCs) maintain homeostasis of bone tissue by providing osteoblasts. Although several markers have been identified for labeling of MSPCs, these labeled cells still contain non-BM-MSPC populations. Studies have suggested that MSPCs are observed as leptin receptor (LepR)-positive cells, whereas osteoblasts can be classified as positive for Runx2, a master regulator for osteoblastogenesis. Here, we demonstrate, using Runx2-GFP reporter mice, that the LepR-labeled population contains Runx2-GFPlow sub-population, which possesses higher fibroblastic colony-forming units (CFUs) and mesensphere capacity, criteria for assessing stem cell activity, than the Runx2-GFP- population. In response to parathyroid hormone (PTH), a bone anabolic hormone, LepR+Runx2-GFPlow cells increase Runx2 expression and form multilayered structures near the bone surface. Subsequently, the multilayered cells express Osterix and Type I collagen α, resulting in generation of mature osteoblasts. Therefore, our results indicate that Runx2 is weakly expressed in the LepR+ population without osteoblastic commitment, and the LepR+Runx2-GFPlow stromal cells sit atop the BM stromal hierarchy.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/genética , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Receptores para Leptina/genética , Animais , Biomarcadores , Diferenciação Celular , Colágeno Tipo I/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Imunofluorescência , Expressão Gênica , Genes Reporter , Imunofenotipagem , Células-Tronco Mesenquimais/citologia , Camundongos , Osteoblastos/metabolismo , Osteogênese/genética , Hormônio Paratireóideo/metabolismo , Receptores para Leptina/metabolismo
18.
PLoS One ; 12(7): e0181126, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28708884

RESUMO

The Janus kinases (Jaks) are hubs in the signaling process of more than 50 cytokine or hormone receptors. However, the function of Jak in bone metabolism remains to be elucidated. Here, we showed that the inhibition of Jak1 and/or Jak2 in osteoblast-lineage cells led to impaired osteoclastogenesis due to the reduced expression of receptor activator of nuclear factor-κB ligand (RANKL). Murine calvaria-derived osteoblasts induced differentiation of bone marrow cells into osteoclasts in the presence of 1,25-dihydroxyvitamin D3 (1,25D3) and prostaglandin E2 (PGE2) in vitro. However, treatment with the Jak1/2 inhibitor, baricitinib, markedly inhibited osteoclastogenesis in the co-culture. On the other hand, baricitinib did not inhibit RANKL-induced osteoclast differentiation of bone marrow macrophages. These results indicated that baricitinib acted on osteoblasts, but not on bone marrow macrophages. Baricitinib suppressed 1,25D3 and PGE2-induced up-regulation of RANKL in osteoblasts, but not macrophage colony-stimulating factor expression. Moreover, the addition of recombinant RANKL to co-cultures completely rescued baricitinib-induced impairment of osteoclastogenesis. shRNA-mediated knockdown of Jak1 or Jak2 also suppressed RANKL expression in osteoblasts and inhibited osteoclastogenesis. Finally, cytokine array revealed that 1,25D3 and PGE2 stimulated secretion of interleukin-6 (IL-6), IL-11, and leukemia inhibitory factor in the co-culture. Hence, Jak1 and Jak2 represent novel therapeutic targets for osteoporosis as well as inflammatory bone diseases including rheumatoid arthritis.


Assuntos
Azetidinas/farmacologia , Regulação para Baixo/efeitos dos fármacos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Osteogênese/efeitos dos fármacos , Ligante RANK/metabolismo , Sulfonamidas/farmacologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colecalciferol/farmacologia , Técnicas de Cocultura , Dinoprostona/farmacologia , Interleucina-11/metabolismo , Interleucina-6/metabolismo , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Masculino , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Purinas , Pirazóis , Ligante RANK/genética , Ligante RANK/farmacologia , Interferência de RNA , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia
19.
J Bone Miner Res ; 32(10): 2074-2086, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28543818

RESUMO

Bone formation is coupled to bone resorption throughout life. However, the coupling mechanisms are not fully elucidated. Using Tnfrsf11b-deficient (OPG-/- ) mice, in which bone formation is clearly coupled to bone resorption, we found here that osteoclasts suppress the expression of sclerostin, a Wnt antagonist, thereby promoting bone formation. Wnt/ß-catenin signals were higher in OPG-/- and RANKL-transgenic mice with a low level of sclerostin. Conditioned medium from osteoclast cultures (Ocl-CM) suppressed sclerostin expression in UMR106 cells and osteocyte cultures. In vitro experiments revealed that osteoclasts secreted leukemia inhibitory factor (LIF) and inhibited sclerostin expression. Anti-RANKL antibodies, antiresorptive agents, suppressed LIF expression and increased sclerostin expression, thereby reducing bone formation in OPG-/- mice. Taken together, osteoclast-derived LIF regulates bone turnover through sclerostin expression. Thus, LIF represents a target for improving the prolonged suppression of bone turnover by antiresorptive agents. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.


Assuntos
Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Glicoproteínas/metabolismo , Osteoclastos/metabolismo , Osteogênese , Proteínas Adaptadoras de Transdução de Sinal , Animais , Animais Recém-Nascidos , Anticorpos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Glicoproteínas/deficiência , Peptídeos e Proteínas de Sinalização Intercelular , Fator Inibidor de Leucemia/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoprotegerina/deficiência , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Ratos , Via de Sinalização Wnt/efeitos dos fármacos
20.
J Bone Miner Res ; 32(6): 1297-1308, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28177161

RESUMO

Long-term treatment with active vitamin D [1α,25(OH)2 D3 ] and its derivatives is effective for increasing bone mass in patients with primary and secondary osteoporosis. Derivatives of 1α,25(OH)2 D3 , including eldecalcitol (ELD), exert their actions through the vitamin D receptor (VDR). ELD is more resistant to metabolic degradation than 1α,25(OH)2 D3 . It is reported that ELD treatment causes a net increase in bone mass by suppressing bone resorption rather than by increasing bone formation in animals and humans. VDR in bone and extraskeletal tissues regulates bone mass and secretion of osteotropic hormones. Therefore, it is unclear what types of cells expressing VDR preferentially regulate the vitamin D-induced increase in bone mass. Here, we examined the effects of 4-week treatment with ELD (50 ng/kg/day) on bone using osteoblast lineage-specific VDR conditional knockout (Ob-VDR-cKO) and osteoclast-specific VDR cKO (Ocl-VDR-cKO) male mice aged 10 weeks. Immunohistochemically, VDR in bone was detected preferentially in osteoblasts and osteocytes. Ob-VDR-cKO mice showed normal bone phenotypes, despite no appreciable immunostaining of VDR in bone. Ob-VDR-cKO mice failed to increase bone mass in response to ELD treatment. Ocl-VDR-cKO mice also exhibited normal bone phenotypes, but normally responded to ELD. ELD-induced FGF23 production in bone was regulated by VDR in osteoblast-lineage cells. These findings suggest that the vitamin D treatment-induced increase in bone mass is mediated by suppressing bone resorption through VDR in osteoblast-lineage cells. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.


Assuntos
Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/patologia , Osso e Ossos/patologia , Osteoblastos/metabolismo , Receptores de Calcitriol/metabolismo , Vitamina D/uso terapêutico , Animais , Osso e Ossos/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Fator de Crescimento de Fibroblastos 23 , Deleção de Genes , Masculino , Camundongos Knockout , Modelos Biológicos , Tamanho do Órgão/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Fenótipo , Receptores de Calcitriol/genética , Vitamina D/análogos & derivados , Vitamina D/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...